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Some unsteady motions of a diffusion flame sheet 
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(Received 19 January 1968) 

A study is made of the response of a diffusion flame sheet to perturbations of 
reactant concentration which are introduced, either as changes in the free 
streams, or as appropriate initial distributions throughout the field. Species’ and 
energy conservation requirements are approximated by linearized boundary- 
layer equations; general solutions are derived for species, enthalpy and tempera- 
ture distributions, as well as for the flame sheet shape, and a number of specific 
problems are solved. 

1. Introduction 
It is inevitable that any theoretical account of a phenomenon with as many 

interconnected physical features as a diffusion flame must rely on a number of 
simplifying assumptions especially when time-dependent effects are involved. 
The precise nature of such assumptions will depend, to some extent, on the 
geometrical ‘configuration to be studied. In  general three configurations are 
important; the counter-flow (or ‘stagnation point ’) flame, the cylindrical arrange- 
ment, with a tube-ejecting fuel into oxidizer carried in a second coaxial pipe, for 
example, and the (substantially) plane flame arising above a properly designed 
flat flame burner. It is with the last of these three geometries that we shall be 
most concerned here, although the distinctions between it and the second form 
diminish as the ratio of the distance from the fuel pipe outlet to its diameter 
decreases. 

The planar, two-dimensional layout to be studied is sketched in figure 1. Both 
oxidizer and fuel streams have the same constant speed U and are at the same 
pressure. They are kept apart by a thin partition which terminates at  2’ = 0. 
Beyond this point, mixing and combustion take place. Both free streams may be 
diluted with some inert species. The partition is assumed to produce no dis- 
turbance to the flow field, so that linearization of convective terms in the con- 
servation equations is in order. (Heat release in the flame has comparatively 
small effect on flow velocities in such an arrangement; see, for example, Clarke, 
1967 a). A consistent assumption is that the work done by the pressure and viscous 
stresses is small and can be omitted from the energy equation. If the coefficients 
of mass and heat diffusion are now assumed to be constant and equal, the species’ 
conservation and energy equations can be dealt with separately and furthermore 
(chemical ‘source’ terms apart) are linear. It follows that any perturbations to 
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the steady state will arise, not from hydrodynamic sources, but from composi- 
tional deviations from the steady regime. Constancy and equality of diffusion 
coefficients is the most radical of the assumptions listed; for the present it seems 
justifiable on the grounds of considerable analytical simplicity, plus the fact that 
no gross distortion of the basic physical mechanisms is involved, 

In  the present paper we adopt the Burke-Schumann sheet model for the 
diffusion flame. This can be viewed as the limiting case of an infinitely fast irre- 
versible ' oxidant-plus-fuel-equals-product ' type of reaction. Since the recent 
work of Fendell (1965) this limit in steady flows has become firmly established as 
the 'first outer solution' in an asymptotic representation of the flame field for 
large burning rates. This is demonstrated, for example, in the articles by Fendell 
& Chung (1965) and Chung & Blankenship (1966) which deal with counter-flow 
flames, and by Clarke (1967 b )  for flames for the type considered here. It has been 
shown by Clarke (1968) that first outer solutions of the Burke-Schumann type 
are valid for a steady hydrogen-oxygen flame supported by a moderately realistic 
set of chain reactions, and that a subsequent inner solution leads to quite good 
predictions of flame structure. This may be interpreted as widening the applic- 
ability of simple flame sheet solutions away from the rather naive type of reaction 
kinetics mentioned above. It is, of course, necessary to establish the conditions 
which apply across a diffusion flame sheet in unsteady motion, since (to our know- 
ledge) they have not so far been explicitly stated. For this purpose the simplified 
kinetic scheme is adequate; the extension of arguments (like those given in Q 3 of 
the paper by Clarke (1967a), for example) to include time-dependent terms is 
immediate and requires no special treatment here. It is sufficient to note that 
the flame sheet is specified by precisely the same conditions (namely, vanishing 
reactant concentrations, and normal concentration-gradient jumps in stoichio- 
metric ratio) as those found in a steady situation. 

With the assumptions made so far, the situation on either side of the flame sheet 
is described by equations of the form 

where K is the diffusivity, V'2 is the Laplacian operator in X I ,  y' co-ordinates and 
@ is either a mass fraction c,, for the species a, or the specific enthalpy of the 
mixture, h. The apparent simplicity of (1) is deceptive, particularly when viewed 
in the context of the present problem. The relevant fundamental solution (or 
Green's function) is a comparatively intractable quantity so that solutions in the 
present case, while not impossible, are very unwieldy. The simple, separable, 
solutions used in the steady flow case (Clarke 1967b) are also not available for the 
particular problem to be considered here. Accordingly, it is most helpful to 
introduce a further approximation, of the boundary-layer type, at this stage. 
This consists simply of retaining the term $d,yr in V I 2 $ ,  and therefore of neglect- 
ing the x'-wise diffusion effects summarized by the term $,.,. . Such an approxi- 
mation is consistent with the idea that the flame is flat and lies substantially 
parallel to the %'-axis. This has certainly been found to be the case for steady 
flames in circumstances like those under investigation here (Clarke 1967 b) ,  with 
the exception of a region in the vicinity of the origin. There the parabolic shape 



S o m e  u n s t e a d y  m o t i o n s  of a diffusion f l a m e  sheet 345 

of the flame has been shown to be of the form 

where a is a constant depending on the parameters of the problem; in particular 
it is a numerical constant multiplied by ( K /  U)&. With the boundary-layer approxi- 
mation introduced above the steady-flame shape would be given by 

y' = ax'$ (3) 

(4) 

(this will be demonstrated below), so that our approximate form of (l), namely 

K$hujy, - u$xj - $f = 0 

XI 9 -id. 
gives solutions comparable in steady flows with those of equation (1) for 

We propose, at  this stage, to tolerate any singular behaviour in the solutions as 
x' J. 0. 

Equations similar to (4) (often called linearized boundary-layer equations) 
have been used previously in heuristic discussions of velocity boundary-layer 
behaviour. Lagerstrom, Cole & Trilling (1949) mention the steady-flow case, and 
Stewartson (1951) has used it to examine unsteady velocity boundary-layer 
conditions for flow over a semi-infinite flat plate started impulsively from rest. 
From the latter analysis we anticipate some discontinuous behaviour in the 
solutions on crossing the line x' = Ut'. Physically this arises from the absence 
of the diffusive term $x,xl, which would act to smooth out any discontinuous 
behaviour sanctioned by the wave-like final terms in (4). (These represent a wave 
propagating from left to right with constant speed U.) Once again, for the present, 
we propose to tolerate this physical deficiency. It is worth remarking that, while 
the practical utility of (4) is marred for the velocity boundary layer by the need 
to satisfy the no-slip condition at the solid surface, no such objection can be 
raised to the use of linear convective terms in the present case. The flame exists 
in the homogeneous gas phase far removed (except near x' = 0) from such gross 
velocity perturbations and, in the circumstances, we anticipate that local varia- 
tions in convection speed will be of secondary importance. 

It is clearly convenient to work in terms of dimensionless independent vari- 
ables, so that we define 

Z = X ' u / K ,  y = Y ' u / K ,  t = t ' u 2 / K .  

Equation (4) is therefore equivalent to 

$.,,-$z-$t = 0, (6) 

where $ is either co (oxidant mass fraction), c, (fuel mass fraction), ci (mass 
fraction of the inert diluent), or h (the specific enthalpy). 

The flame sheet is located at 
Y = YAX, t ) ,  (7) 

and it is part of our task to calculate the function yffor given initial and boundary 
conditions. The behaviour of the mass fractions at  the flame sheet is conditioned 
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by the requirements that 
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c,(x, yf + 7 t )  = 0 = c d x ,  Yf- > % 

where A' is the stoichiometric oxidant-to-fuel mass-fraction ratio. ci must be 
continuous and have continuous y-derivatives across y = yf. 

S y  
U 

Oxidant 
4 

I / X = t  

Thin partition X 

U 

Fuel 

Flame sheet y = yf (x, t)  - 
FIGURE 1. Sketch of the configuration. x, y and t are the dimensionless co-ordinates 
defined in ( 5 ) .  The flame sheet is shown in a position corresponding to oscillatory free 
stream concentrations (between x = 0 and 2 = t )  and non-steady initial conditions 
(x > t ) .  

A few words of explanation of (9) are perhaps in order. The basic requirement 
(eg. Clarke 1967a) is for the derivatives of co and cF normal to the flame sheet to 
obey a relation of the form (9) .  Writing yfz for the (partial) x-derivative of yf, the 
normal derivative operator is equal to 

and the tangential derivative operator is 

But the mass fractions co and cF are constant (zero) along the flame so that, from 
the latter form, one has 

&cX a = -yfx -c,; a 01 = 0, F. 
a Y  

The normal derivative of c, is therefore equal to 

and ( 9 )  follows. 
With the assumptions of no pressure-work and equality of mass and heat 

diffusion coefficients, the equations satisfied by h and ci are homogeneous and 
both variables are continuous with continuous first and second y-derivatives 
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everywhere. The same can be said of co and c, in any region where these quantities 
satisfy equations like (6). Referring to figure 1, the remarks can be taken to apply 
to co in the half-plane y > y f  and to c, in y < yf. The analysis is greatly facilitated 
if the conditions (8) and (9) can be applied, not on y = y f ,  but on y = 0. It is 
therefore important to note that, since co and cF will have to satisfy (6) in y > 0 
or y < 0, respectively, with the consequence that their y-derivatives are well- 
behaved, it is possible to use Taylor series for co and c,, as follows: 

a 
co(x, Yf + , t )  = c&, 0 + , t )  + - c&, 0 + , t )  y f  + . . . , 

aY 
a 
aY 

c,(x,y,- , t )  = C f f ( Z ,  0-  , t )  +- C&, 0-  , t )  y f +  ... 

where 

The stoichiometry condition (9) can similarly be replaced by 

Fo = -&F’. (14) 

The solutions giving mass fraction and enthaIpy distributions, and the location 
yf(x,t) of the flame sheet, can now be obtained from a consideration of the 
boundary and initial value problem for (6). 

2. Some general solutions 
Green’s function for (6) is defined as a solution of 

(15) 
which satisfies appropriate homogeneous conditions on certain of the boundaries 
(just which we shall see below) in the domain within which a solution of (6) is 
sought. xo, yo, to are the source co-ordinates and 8(z- zo) is the Dirac function of 
x - zo ( = 0, z + 2,; = a, z = zo; x = x, y, t ) .  G, which we shall sometimes write as 
G(z, y, t 1 xo, yo, to) to indicate the response at  a field point x, y, t due to the presence 
of a source at xo, yo, to, must also satisfy a causality condition, namely 

Guu - Gz - G, = - 4 n & ( ~  - x0) &(y - yo) 8(t - to ) ,  

G(X, y , t  I %YO,tO) = 0 (t  < to).  
Making the substitutions 

?I = (x - xo) - ( t  - to), 

Y = y-yo, 7 = t-to, 
equation (15) becomes 

G y y  - G, = - 4nS(7) 8( Y) &(7). 
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Apart from the function 6(~), this is precisely the equation which defines Green's 
function for the one-dimensional unsteady diffusion equation. We immediately 
infer that, in an unbounded domain, the Green's function that we require 
(writing g for the unbounded domain value of G )  is given by 

g = 2 - exp{- Y 2 / 4 7 } B ( ~ ) H ( 7 ) ,  (? 
where H(7)  is the unit function of 7 ( = 0, 7 < 0; = 1,7  > 0). The form of g exhibits 
two essential features of our problem, namely the diffusive behaviour in y- 
directions combined with simple wave propagation along positive x-directions 
a t  a unit (in the dimensionless system) speed. (The source only produces an 
effect when 7 = 0; that is when x - xo = 7 > 0, where the inequality arises from 
H ( 7 )  in (1 9). It follows that there is no upstream influence according to the present 
theory.) For the problems treated below, G can be found from g by simple image 
methods. 

By the usual manipulations (e.g. Morse & Fesbach 1953) the general solution 
for $(x, y, t )  in the domain x > 0, t > 0, ya > y > y b  can be shown to be 

In  the first double integral the notation implies that the integrand consists of 
the terms shown, evaluated a t  yo = ya minus the same terms evaluated at  yo = Y b .  

There are no contributions to the solution from integration on the 'surfaces' 
to = t + and xo = x + , on account of causality. 

The first two integrals in (20) combine the effects of the boundary conditions 
and the last integral represents the influence of initial values. 

When considering solutions for co (in y > 0) we shall take yb = O +  and let 
ya + co; for cF (in y < 0) we shall put yu = 0 - and let yb -+ - co; for the enthalpy 
1% and diluent mass fraction ci we let ya -+ 00 and yb -+ - 00. In  the two latter cases 
g is the correct form for G. The boundary-value integrals at  ya and Y b  both 
vanish in the limit (y, -+ co, yb -+ - co) provided that h, ci and their y-derivatives 
are bounded. It is physically desirable that these conditions should be met 
whence, using (19) in (20) it follows that 

where Q is either h or ci. 
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Since there is no upstream influence in the present description we can reason- 
ably refer to conditions on x = 0 as free-stream conditions. Solution (21) shows 
that at  positions downstream of the convection wave head at  x = t both h and ci 
are determined by their initial distributions at  a location to the left of the field 
point by an amount equal to the distance travelled by the wave in the time 
interval 0 to t (this is the second integral in (21)). To the left of x = t ,  conditions 
are determined by the free stream behaviour at  an earlier time (first integral in 
(21)) which is again fixed by the convection speed. We remark that the initial 
and free stream data can be discontinuous; in particular neither h(0, yo, to)  
nor c,(O, yo, to) will necessarily be continuous across yo = 0 ,  for example. 

3. The species' concentrations and flame sheet position 
In  using the general solutions (20) for co and cF we must pay attention to the 

type of boundary value data to be used in the integrals along y = ya and Yb. It is 
clear that the physical requirements of boundedness for co, c, and their y- 
derivatives are sufficient to ensure that the integrals aIong ya+m (for co) and 
yb -+ - co (for cF) will vanish in the limit. Therefore it is only necessary to deal 
with the first integral in (20) when yb = O +  and ya = 0-  for co and c, 
respectively. 

In  fact we have no direct data for co, c, or their y-derivatives as I yI -+ 0, nor 
indeed do we know anything about combined behaviour, as might be implied 
from (10) and ( l l ) ,  since yf is an (as yet) unknown function. We find it useful to 
consider two forms of solution; the first assumes that co and cF are given on 
y = 0, and uses the Green function 

while the second assumes that 8co/8y and ac,/ay are given, so that an appropriate 
function is 

G, = 2 ( + J X P { -  t - to (Y-Yo)2/4(t-to)}+exP{-(Y+Yo)2/4(t-to)})~(71)H(7). (23) 

Putting these forms of G into solution (20), and making use of the properties 
of the 6 and H functions, gives two versions of the solution for, let us say, co: 
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The upper (minus) signs inside the square brackets in the last two integrals of 
(24) are to be taken with the first integral in the curly brackets; or one must take 
the second integral in curly brackets with the lower (plus) signs in the square 
brackets. 

The solution for cF(x, y, t) is similar to (24) except for the following changes; 
replace subscript 0 by subscript P, multiply the integrals in curly brackets by 
- 1 and change the limits in the last two integrals from 0 to co to - co to 0. 

It is important to note that the solutions for co and cF are only valid in x > 0, 

It is now convenient to define the integrals 
IyI > 0, t  > 0. 

Ja, = ~ , ( ~ - t t ,  30, 0) [exP { - (Y - yo)'/4t) T exP { - (Y + yd2/4t)I 2 H(x- '1, (25) s 
K ,  H( t  - 21, (26) 

where the limits of integration are 0 to co when a = 0 and - co to 0 when a = P: 
in addition, one must take either upper or lower signs throughout, so that there 
are four 'J '  integrals and four ' K ' integrals in all. When y = 0 all four of J,- and 
K,- are zero; J,+ and K,+ are not zero, however, and we write 

sc, (0, yo, t - 5) [exp { - (Y - y 0 ) ~ / 4 ~ )  T exp { - (9 + yo) '/4x)I 
X4 

J$L, K',! to denote Ja+, K,, in the limit IyI + 0. (27) 

Using this notation we can now find co and cF from (24) as lyl --f 0: 

ax0 Irl'o(xo, o+  ,xo + t  -s)  __- S" ( z - t ) H ( a - t )  (x - X O P  
2n3co(x, 0 + , t )  = - 2 

+K$!+ + J$! = - 2 d y f F O ;  (28) 

dxo 
-FF(X0, 0 - , xo + t -  x) ___ 

(x - xo)k 
+ K$)+ + J f !  = - 2dyf 3''. 

(5- ) H ( z - t )  

(29) 

s" 2nkc,(x, 0 - , t )  = + 2 

The last results in (28) and (29) follow from (10) and (11). 

quently using (14) it  is readily found that 
Dividing the second version of (28) by the second version of (29) and subse- 

dx0 .Po(xo, 0 + xo + t - X) ___ = $(K$! + J$L + dtZ(K$!+ + JO;)). 2s6-1; H(z--t) (x - so)* 
(30) 

Putting this result into (28) gives 

co(x, 0 + 7 t )  = - Yf -Fo 

Since, in principle, the ' J '  and ' K '  integrals can be evaluated for any given 
initial and free-stream data, (31) gives the solution for co(x, 0 + , t ) .  This is the 
boundary value required for a complete solution, giving co as a function of x, y 
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and t ,  by usingthe first of the two forms in (24). It follows that solutions for c, can 
also be found and the problem is, formally, solved. Once co(x, y, t )  is known it is a 
simple matter to find Fo, whence yf (the flame sheet position) can be deduced 
from (31). 

It should be noted that it is the value of co when x is equal to x,, y to 0 + and t 
to x,, +t-x  that is required in (24) (see the first integral there). Therefore one 
must make these substitutions in Ka+ and Ja+; in particular we note that the 
arguments x - t and t - z of the unit step functions are preserved by the substi- 
tutions. The inference is that the behaviour of co (and hence cp)  can, like that of 
h and ci, be considered separately in two regions, namely 0 < x < t and 0 < t < x. 
In  the former case, only the Ka,  integrals contribute (they describe the influence 
of the free-stream conditions), while in the latter case it is the J,, integrals which 
are involved; they describe the effect of the initial conditions. 

There are a number of routes to the final solution in addition to the one just 
mentioned. One could, for example, h d  Po by solving the integral equation 
presented in (30), or by differentiating the general solution for co given in (24) 
(first version). Little or no advantage arises from such alternative methods 
and we shall pursue the thoroughly straightforward method advocated in the 
previous paragraphs. This involves the evaluation of integrals (like KO+, JF-, 
etc.) and it is therefore time to abandon generalities and deal with some specific 
examples. 

However, before going on to consider these we should remark that, having 
found solutions for co, cp, ci and h, the absolute temperature T follows at once 
from the caloric equation of state, namely 

(32) h = C ca(ha + qa). 
a 

The sum is taken over all species (i.e. with cc = 0, P, i and P, the latter indicating 
the product species). ha is the thermal part of the specific enthalpy of species &, 

T 
ha = so c p a  (33) 

(C,, is the relevant specific heat at constant pressure) and qa is the heat of forma- 
tion. 

The expression given in (32) can be written in terms of co, C ,  and ci because 

cp  = 1 - (C()+C,fCi). (34) 

Although it is not generally true that C,, is either the same for all a! or invariant 
with T ,  we shall, for purposes of illustration, assume that the specific heat has 
both of these features. It follows that, in such a case, 

h = C p T + ( l - c o - c s - C i ) q p .  (35) 

(We have put qo = q, = qi = 0; the heat of formation of the product species, 
qp, is negative.) In  particular, the flame sheet temperature, T,, is given by the 
expression 

since co and c, are both zero on the sheet. The subscript f on h and ci indicates the 
value of these quantities where y = y f .  
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4. Examples 
( i )  Free-streamproblems (0 < x < t )  

Assume that the free-stream distributions of oxidant and fuel mass fractions are 
as follows: 

COP, y, t )  = x ( t ) ;  (0  < y < y.+); 

C,(O,Y, t )  = T‘(t); (0 > y > -$I-); 

= 0;  (Y, < y). (37) 

= 0; (-y- > y). (38) 

Using (31) in the first form of (24), together with the definitions (26), we have 

where K& and K& in the integrand are found from (26) with x, written for x 
and xo + t - x written for t. 

With the conditions given in (37) and (38), 

The results given in (40) and (41) can be substituted into (39) and the integral 
evaluated (use of the PaZturng theorem and Laplace transforms is helpful) to give, 
after some re-arrangements, 

c&, Y, t )  = 6x(t  - 4 {erf(y/2x&) + erfC(y+ - y)/2x% 

+ $dr(t - x){erf (y/2x+) - erf [(y- + y)/224]). (43) 

F, is readily found from (43), so that, making use of (31) and the results already 
given we discover that the flame location is given by the expression 

The solution for yf takes on a slightly more tractable form if 

X ( t  - x) - d r y t  - x) 
X ( t  - Z) +dry - Then we can define W(t  - x) E 

and write yf(x, t) = - W(t-x)X(x). (48) 

In  this form the flame location is revealed as a steady shape-function X(x), 
modulated by the free-stream conditions evaluated at an appropriately retarded 



Some unsteady motions of a diffusion$ame sheet 353 

time. Some particular results are noteworthy. If y+ is infinitely large, S(x )  
simplifies to (m)* and 

yf = - W(t - x) ( 7 7 X ) t  (49) 

If, in addition, W does not depend on t - x the flame shape is parabolic and steady. 
This agrees with (3) where we can now identify a in that equation with 

- (7rK/ U)* w. 
It is interesting to observe that the field need not be steady for W to be inde- 

pendent of t - x. Equation (40) shows that it is only necessary for I? and x to be 
proportional to one another; the free stream fuel and oxidant concentrations 
must therefore vary similarly with time. The effect will be to produce a flame 
of steady shape but, as we shall see, varying temperature. These results will 
be true for any value of y+ (not just infinity) as can be seen from (46)) (47) and 
(48). 

If y+ is finite, so that the fuel and oxidant streams issue from parallel slots of 
equal cross-section (as is often found in experimental equipment) then there will 
always be an x large enough to make (y+/2x*) < 1. In that event 

S(x)  N 4xy;1, (50) 

and the flame shape departs considerably from the parabolic form discussed 
above. 

Before drawing any further inferences from the result given in (50) we should 
inquire into the effect of the assumption which leads to conditions (10) and (1 1). 
This involves the transfer of boundary values from y = yf to y = 0 and requires 
that the remainders in Taylor series expansions of oxidant and fuel fractions 
should be negligible; to be explicit we should find 

where 0 < 6' 6 1. When y+ is infinite this condition can always be met by ensuring 
that W2 < 1. However, when y+ is finite this condition will only prove satisfactory 
if (roughly speaking) I yf I does not approach I y+I too closely; this will be satisfied 
by flames with an asymptotic steady shape like S(x)  in (50) if I WI < y2,/4x and 
we infer that the present solutions must begin to lose accuracy for sufficiently 
large x. 

One case where this problem will not arise for finite y+ occurs when W is zero; 
(40) shows that, in such circumstances, 

X ( t )  = Jwt) 

and the streams must remain in stoichiometric proportion for all time. 
To summarize the results derived so far, we can say that the flame sheet 

appears to respond instantaneously to the changes of composition in the free 
stream, in the following way. Any changes which occur in the free streams are 
signalled to downstream points at the constant convection speed U. Then, a t  
any given point, the flame sheet is found in the position that it should occupy in a 
steady flow whose free stream composition corresponds with the instantaneous 

23 Fluid Mech. 34 
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‘local’ value. In  this sense the sheet can be considered stable in response to 
perturbations of free stream composition. 

To conclude this section, we shell examine the temperature field on the 
assumption that (35) is an adequate caloric equation of state. It is therefore 
necessary to calculate c4, for which purpose we note that, since there is to be no 
product species in either free stream, conditions (37) and (38) require 

ci= 1;  y+ < y; 

= l -x( t ) ;  0 < y < y+; 
= i-ryt);  -y- < y < 0; 
= 1; y < -y-. 

Putting these results in (21) (with x < t )  gives 

l-ci(x,y, t )  = Br(t-.)(erf[(y_+y)/~x3]-erf(y/2x~)) 

+ ix(t - x) {erf [(y+ - y)/2x3] + erf (y/Zx*)). (52)  

Since cp is zero in the free stream, (34) and (35) show that h is equal to C, T 
there; we assume that both streams are at the same uniform temperature T, ,  
whence we can write, for all y, 

4 0 ,  y, t )  = c, TaJ. 

h(x,  y, t )  = c, T,,  

(53) 

(54) 

Equation (21) then shows that 

for all x in 0 < x < t ;  in particular hf has this value. Equation (36) shows that the 
increase of Tf above T, is directly proportional to 1 - ci in (52) with y = yp In  
particular we note how dilution due to diffusion of the inert species will generally 
cause the flame temperature Tf to fall as x increases along the flame sheet; also 
Tf only depends on time in its retarded form t - x. 

(ii) Initial-valueproblems (0 < t < x) 
We shall consider a representative initial distribution for co and cF which, by a 
choice of the constants involved, can be made to display several features of the 
initial value problem. The general solutions have already been given in 93 and 
we observe that it is only the ‘ J ’  integrals that appear when x > t. 

One would anticipate that the use of values for c,(x - t ,  yo, 0)  in (25) which 
correspond to an initial steady state field should, eventually, lead to a solution 
c,(x, y, t )  entirely similar to the initial value data, since there is no perturbation 
mechanism present in such circumstances. Confirmation of this fact would 
provide an interesting check on the analysis, so that we select the following 
initial distributions for co and cF:  

co(x, y, 0) = u + b erf (y/zx+), 

cF(x, y, 0)  = d + g  erf (y/22+). 

(55 )  

(56) 

(a here need not be confused with the symbol used earlier, since the latter will 
not arise in this section.) By manipulating the constants a, b, d and g we can 
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include the (special) steady field case amongst a number of other interesting 
situations. 

When using the initial conditions given by (55) and (56) to evaluate J, ,  one 
must write yo for y and x- t for x. The constant terms a and d in (55) and (56) are 
easily dealt with; the error function parts of these equations are rather more 
awkward and evaluation of the ' J 7  integrals is facilitated by judicious differentia- 
tions with respect to parameters in their integrands. By these means it can be 
shown that 

J,- = 2n*(a erf (y/2t4) + b erf (y/2x*)), 

JF- = - 2n*{d erf (y/2t*) - g erf (y/2x*)), 

(57) 

(58) 

From (3 1) we find that 
2 

cO(x, 0 + , t )  = * ( a - - d d )  + $(b + d g )  { 1 +;sin-l(:- 1)). 

Writing xo for x and xo + t - x for t in (61) gives the boundary value required for 
the first integral in (24), whose limits are now x - t to x. After some rearrangements 
it is found that 

co(x, y, t )  = a erf (y/2t*) + +(a - d d )  erfc (y/2t*) + b erf (y/Zx*) 

t exp { - y'-/4u) 
du. (62) 

We can now check whether co in (62) will reduce to co in (55) if the constants a, 
b, d and g represent an initial steady state. The latter is ensured if (8) and (9) are 
satisfied or, in other words, if 

a = - b erf (yr/2x*); d = - g erf (yr/2x*); (63a) 

b = - d g .  (63b) 

Apart from the fact that the initial value of yr must be proportional to x* (see 
equation (49) et seq.) (63a, b) also show that 

a + d d  = 0. (63c) 

It is clear that (62) does indeed reduce to (55) for all t. 

previous paragraph we now find Po from (62) : 
In  order to find yr in conditions which are more general than those of the 

From (31) and (61) it follows that 

( a - d d )  + + ( b + d g ) [ l +  (2/n)sin- ([ 2t/xl-11)l]. 
(a + A d )  x* + (b - d g )  t* (65) 

23-2 
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Let us consider some special cases. First, assume that, prior to the initial 
instant of time, both fuel and oxidant are uniformly distributed in their re- 
spective half-planes (y < 0 and y > 0). Then both b and g are zero and (65 )  
becomes 

The flame sheet therefore moves bodily (in the region x > t )  downwards or up- 
wards, depending on whether a=.,dd,t  a t  a rate which diminishes like t d .  
From the definitions of the dimensionless co-ordinates (see (5)) it is clear that the 
real displacement is independent of U and that the same result should hold if 
U is zero; this can readily be confirmed. The (rather idealized) situation requires 
that, at  the same time as the partitition (which can be presumed to exist between 
the fuel and oxidant prior to t = 0) is removed, the whole of the interface ignites. 
This could possibly be achieved with the use of a thin metal diaphragm separating 
the gases which is suddenly heated and vapourised. 

If t is allowed to approach zero for a fixed x we observe that 

s i r 1  ([%/XI - 1) --f - n/2, 

and the term b + di'g in (65)  vanishes. It follows that 

yf+Yfu; t J. 0. (67 )  

(yfu is defined in (66 ) ) .  For initial fuel and oxidant mass fractions given by (55) 
and (56)  it follows that the flame sheet always starts from they = 0 axis (unless 
conditions (63)  hold) and that, in the early stages, it begins to move like the flame 
sheet discussed in the previous paragraph. 

Suppose now that the free-stream conditions are consistent with (55) and (56).  
By this we mean that 

c,(O,y,t) = a f b ;  (y > 0,t 3 0) ,  ( 6 8 4  

~ ~ ( 0 ,  y, t )  = d-g ;  (y < 0, t 2 0). (68b)  

In the notation of $4(i) this means that y+ and y- are infinite (so that (49) holds) 
and that we should interpret x as a + b and I' as d - g.  The flame shape in 0 < x < t 
is therefore given by 

If we now let x f t in (69) and x J. t in (65) it is easily seen that yf is continuous 
across the wave-head x = t and it is depicted as such in figure 1. It is however, 
equally clear that the slope of the flame sheet ayf/ax is not continuous, in general, 
at  the same location. It is fair to conclude that the terms in cozz, etc., which have 
been neglected, will have a significant part to play in fixing details of the flame 
shape near x = t. 

proportions; if a > A d  the mixture is fuel-weak. 
t Equality of a and d d  means that oxidant and fuel exist initially in stoichiometric 
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We have seen how, in the case of initially uniform distributions of oxidant and 
fuel, the flame sheet moves with diminishing speed to infinity in one direction or 
another (see (66)). Suppose that we fix a value of the ratio t/x, say 

t 
-=w ( < l ) .  
X 

Then (65) gives 

(a - A d )  + &(b + d g )  [1+ (Z/n) sin+ (2w- l)] 

(a + d d )  + (b - d g )  wa 

and we see that yf behaves, locally, like the flame described by (66); its displace- 
ment depends on w and the flame is generally therefore not flat. 

We can envisage the solutions in this section as crude models for the way in 
which a flame sheet responds to finding itself in an environment not initially 
suited to its steady continuation. If we fix attention on some chosen x-location, 
the sheet begins to move from its position on y = 0 towards the position which it 
would occupy in a steady field (see result (69) et Seq.). When the wave head arrives, 
at  a time t = x, the conditions at  x become subject entirely to the free-stream 
conditions which have been imposed after the initial instant; from time t = x 
onwards the flame responds instantaneously to free-stream changes in the way 
that has been described in 94(i). Therefore, in the sense that at  some given x the 
flame sheet’s movements remain bounded, one may describe it as responding in 
a stable way to the perturbations imposed upon it. 

The flame temperature in x > t will depend not only on the distributions of 
oxidant and fuel mass fraction, co and cF, but, as can be seen from (35), (36) and 
( Z l ) ,  on the initial distributions of the diluent concentration ci and temperature 
T as well. The general solutions are available in the equations quoted, but we 
note one very simple result relating to the case arising when the constants b and 
g (in (55), (56)) are zero. If we also assume that the constants a and d take the 
values a = d = 1, so that the initial diluent concentration vanishes everywhere, 
(21) shows that the subsequent diluent concentration is always zero in z > t. If 
it is assumed that the initial enthalpy distribution is equal to C,T,, equation 
(21) shows that the enthalpy always has this value in x > t. It follows at  once 
from (36) that the flame sheet temperature is simply equal to T ,  plus ( - qr/Cp), 
i.e. it is the adiabatic flame temperature. This is maintained for all time and does 
not depend on where the flame is or how quickly it is moving. 
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